is 2 66973 - 1
has 20161 decimal digits
takes 0.000 GHz-days to do one PRP test
Last-known PrimeNet details:
Exponent is not assigned to anyone
0 primality tests remaining
ResidueStatus
L-LEA443047C0225095double-checked
PRP-unknown--unknown-

 Trial FactoringP-1 FactoringCombined
LimitGHz-daysProbabilityB1B2GHz-daysProbabilityGHz-daysProbabilityProb over default TF
Actual267443.670174.6269%10000000020000000000.432011.3806%444.102177.5145%2.8876%
PrimeNet2400.000057.5000%700100000.00005.5649%0.000059.8651%2.3651%
GPU722440.000061.3636%500100000.00002.2172%0.000062.2203%0.8566%
Difference+23+443.6701+13.2632%+99999500+1999990000+0.4320+9.1634%+444.1021+15.2942%+15.2942%

Known prime factors (1 factor, 123.6 bits, 0.18448649% known):
Remaining cofactor is not a probable-prime

P-1GHz-days
exponentfactordigitsbits*kdate foundmin B1min B2min. TFmin. P-1normal P-1
669731563518019292855673684270764460426314338123.556116727488636678637188439428162127
32 × 131 × 239 × 414248968655369372627818867
2021-04-042394142489686553693726278188672.420e+124.791e+168.948e+16

P-1 results:
 GHz-DaysworthFactor
probability
dateuseridcompidb1b2estagefactordigitsbits*spentsaved
2001-04-29T00:00:00ANONYMOUSv4_computers10000010000000---0.001--2.215%
2001-08-18T00:00:00Alex Kruppav4_computers1000000100000000---0.014--5.214%
2002-04-28T00:00:00ANONYMOUSv4_computers163841638400---0.000--0.771%
2002-06-09T00:00:00ANONYMOUSv4_computers327683276800---0.000--1.220%
2002-07-20T00:00:00ANONYMOUSv4_computers655366553600---0.001--1.799%
2003-02-02T00:00:00ANONYMOUSv4_computers13107213107200---0.002--2.505%
2003-03-27T00:00:00ANONYMOUSv4_computers26214426214400---0.004--3.328%
2003-05-04T00:00:00ANONYMOUSv4_computers1048576104857600---0.014--5.288%
2003-06-06T00:00:00ANONYMOUSv4_computers2097152209715200---0.028--6.408%
2003-08-08T00:00:00ANONYMOUSv4_computers4194304419430400---0.057--7.613%
2003-11-08T00:00:00ANONYMOUSv4_computers8388608838860800---0.114--8.890%
2003-11-28T00:00:00ANONYMOUSv4_computers167772161677721600---0.228--10.219%
2012-06-03T14:06:00alpertronManual testing1000000002000000000---0.432--11.381%


Trial Factoring results:
 BitsFactorGHz-Daysworth
dateuseridcompidfromtofactorbits*digitsspentsaved
1999-10-15T00:00:00ANONYMOUSv4_computers252253--0.009--
2000-04-05T00:00:00ANONYMOUSv4_computers21254--0.036--
2000-11-15T00:00:00ANONYMOUSv4_computers21256--0.143--
2002-10-12T00:00:00ANONYMOUSv4_computers21257--0.287--
2016-02-23T04:50:40LaurVManual testing257258--0.287--
2016-02-23T04:50:53LaurVManual testing258259--0.573--
2009-01-23T22:09:00Sturle Sundegimo.ifi259260--1.147--
2013-11-03T23:54:00lycornasteroid260261--2.293--
2014-12-24T02:34:00Sid & AndyMrs_Potato_Head261262--4.587--
2016-04-12T08:12:21Sid & AndyBullseye262263--14.66--
2018-01-01T08:09:49YxinityManual testing263264--29.31--
2017-12-31T18:08:32YxinityYGSMainFrame263264--29.31--
2019-02-14T16:39:54YxinityManual testing264265--55.79--
2019-02-14T10:32:36YxinityYGSMainFrame264265--55.79--
2021-03-30T11:12:13Ruslan BorisovManual testing265266--111.6--


ECM factoring results:

Old Calculation Method

Total ECM effort:193.941 GHz-days
Estimated T-Level:36.740
DigitsB1CurvesCompleteFacMiss
20110003178 / 10031.7800.000%
25500003178 / 28011.3500.001%
302500003178 / 6404.9660.695%
3510000003044 / 15801.92714.556%
4030000001636 / 47000.34870.601%

New Calculation Method

Total ECM effort:193.941 GHz-days
Estimated T-Level:36.740
DigitsB1CompleteFacMiss
2011000539.5100.000%
2550000119.7480.000%
3025000021.5800.000%
3510000003.1494.291%
4030000000.38368.189%
45110000000.04096.049%
50440000000.00499.623%


ECM Summary

B1B2factorcurvesGHz-days
250000250000001341.023
10000001000000001,40843.01
30000003000000001,635149.8
300000030000000010.092


Lucas-Lehmer results:
dateuseridcompidres64spent (GHz-days)
2015-04-11T05:58:00MadPooManual testingEA443047C02250959.80410e-5


PRP results:
dateuseridcompidcofactorsres64PRP
2021-04-06T05:05:45Joe S.VMWare3
15635180192928556736842707644604263143
C0B65FB4377A74__no
2021-04-08T22:17:24Corkbc1
15635180192928556736842707644604263143
C0B65FB4377A7419no


P-1 factor-bounds graph:
B1 = 100000000, B2 = 2000000000 (P-1 stage 2)
B1 = 16777216, B2 = 1677721600 (P-1 stage 2)
B1 = 100000000 (P-1 stage 1)
B1 = 8388608, B2 = 838860800 (P-1 stage 2)
B1 = 4194304, B2 = 419430400 (P-1 stage 2)
B1 = 16777216 (P-1 stage 1)
B1 = 2097152, B2 = 209715200 (P-1 stage 2)
B1 = 8388608 (P-1 stage 1)
B1 = 1048576, B2 = 104857600 (P-1 stage 2)
B1 = 1000000, B2 = 100000000 (P-1 stage 2)
B1 = 4194304 (P-1 stage 1)
B1 = 2097152 (P-1 stage 1)
B1 = 262144, B2 = 26214400 (P-1 stage 2)
B1 = 1048576 (P-1 stage 1)
B1 = 1000000 (P-1 stage 1)
B1 = 131072, B2 = 13107200 (P-1 stage 2)
B1 = 100000, B2 = 10000000 (P-1 stage 2)
B1 = 65536, B2 = 6553600 (P-1 stage 2)
B1 = 262144 (P-1 stage 1)
B1 = 32768, B2 = 3276800 (P-1 stage 2)
B1 = 131072 (P-1 stage 1)
B1 = 16384, B2 = 1638400 (P-1 stage 2)
B1 = 100000 (P-1 stage 1)
B1 = 65536 (P-1 stage 1)
B1 = 32768 (P-1 stage 1)
B1 = 16384 (P-1 stage 1)
101
102
103
104
105
106
107
108
101
102
103
104
105
106
107
108
109
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
TF factor-bounds graph:
267
266
265
264
263
262
261
260
259
258
257
256
254
253
250
260
270
280
290
2100
2110
2120
2130
Last modified: 2021-12-22T17:05:15+00:00