is 256843-1
has 17,112 decimal digits
takes 0.000 GHz-days to do one L-L test
Last-known PrimeNet details:
0 L-L tests remaining
ResidueStatus
L-L839C3AE20CC37FD7double-checked
PRP-unknown--unknown-

 Trial FactoringP-1 FactoringCombined
LimitGHz-daysProbabilityB1B2GHz-daysProbabilityGHz-daysProbabilityProb over default TF
Actual26328.077674.6032%1,000,000,00012,721,806,059,6161,193.694730.5150%1,221.7724105.1182%45.1182%
PrimeNet2400.000060.0000%60010,0000.00005.1165%0.000065.1165%5.1165%
GPU722440.000063.6364%50010,0000.00002.1162%0.000065.7526%2.1162%
Difference+19+28.0776+10.9668%+999,999,500+12,721,806,049,616+1,193.6947+28.3988%+1,221.7723+39.3656%+39.3656%

Known prime factors (1 factor, 132.5 bits, 0.23306571% known):
Remaining cofactor is not a probable-prime

GHz-days
exponentfactordigitsbits*kmin B1min B2date foundmin. TFmin. P-1normal P-1
56843760183937386225359235000976977461852976140132.48266866978993563443100733685500190160
24 × 5 × 7 × 79 × 109 × 769 × 809 × 202001 × 5876641 × 18776409341
5,876,6411.87764e+102017-02-082.738e+121.76903.2861

P-1 results:
 GHz-DaysworthFactor
probability
dateuseridcompidb1b2estagefactordigitsbits*spentsaved
2001-04-29T00:00:00ANONYMOUSv4_computers100,00010,000,000---0.001--3.470%
2001-08-18T00:00:00Alex Kruppav4_computers1,000,000100,000,000---0.011--7.346%
2002-04-28T00:00:00ANONYMOUSv4_computers16,3841,638,400---0.000--1.382%
2002-06-09T00:00:00ANONYMOUSv4_computers32,7683,276,800---0.000--2.065%
2002-07-20T00:00:00ANONYMOUSv4_computers65,5366,553,600---0.001--2.896%
2003-02-02T00:00:00ANONYMOUSv4_computers131,07213,107,200---0.001--3.861%
2003-03-27T00:00:00ANONYMOUSv4_computers262,14426,214,400---0.003--4.947%
2003-04-27T00:00:00ANONYMOUSv4_computers1,048,576104,857,600---0.012--7.438%
2003-06-01T00:00:00ANONYMOUSv4_computers2,097,152209,715,200---0.023--8.820%
2003-07-30T00:00:00ANONYMOUSv4_computers4,194,304419,430,400---0.046--10.264%
2003-10-23T00:00:00ANONYMOUSv4_computers8,388,608838,860,800---0.092--11.748%
2003-11-08T00:00:00ANONYMOUSv4_computers16,777,2161,677,721,600---0.184--13.254%
2012-02-17T11:13:00Jocelyn LaroucheManual testing17,101,16917,101,169---0.029--6.086%
2012-05-08T14:00:00alpertronManual testing100,000,0002,000,000,000---0.350--14.422%
2017-02-08T23:15:24kkmrkkblmbrbkManual testing1,000,000,00012,721,806,059,61640132.4821,1940.0002,38730.515%


Trial Factoring results:
 BitsFactorGHz-Daysworth
dateuseridcompidfromtofactorbits*digitsspentsaved
1999-10-29T00:00:00ANONYMOUSv4_computers252253--0.011--
2000-04-05T00:00:00ANONYMOUSv4_computers?254--0.042--
2000-11-05T00:00:00ANONYMOUSv4_computers?256--0.169--
2002-10-26T00:00:00ANONYMOUSv4_computers?257--0.338--
2016-02-23T04:51:01LaurVManual testing257258--0.338--
2016-02-23T04:51:16LaurVManual testing258259--0.676--
2009-01-05T21:37:00Sturle Sundegimba.ifi259260--1.351--
2013-11-16T01:51:00lycornasteroid260261--2.702--
2014-09-13T14:22:00Sid & AndyMrs_Potato_Head261262--5.404--
2016-03-16T07:13:15snme2pm1G1262263--17.27--


ECM factoring results:
ECM Summary

B1B2factorcurvesGHz-days
250,00025,000,0001510.934
1,000,000100,000,0001,42835.34
3,000,000300,000,000110.817


Lucas-Lehmer results:
dateuseridcompidres64spent (GHz-days)
2015-04-11T05:58:00MadPooManual testing839C3AE20CC37FD76.74221e-5


PRP results:
dateuseridcompidcofactorsres64PRP
2017-09-21T20:06:06Oliver KrusePRP
7601839373862253592350009769774618529761
7D670A7374F780FEno
2017-09-21T21:29:35Oliver KruseManual testing
7601839373862253592350009769774618529761
7D670A7374F780FEno
2017-10-02T11:06:07kkmrkkblmbrbkManual testing
7601839373862253592350009769774618529761
7D670A7374F780__no
2017-12-07T03:23:27ATHxps
7601839373862253592350009769774618529761
7D670A7374F780__no
2020-04-17T13:45:46Oliver KruseAddPrpType5
7601839373862253592350009769774618529761
119FA6BE18C1F5__no


P-1 factor-bounds graph:
B1 = 1,000,000,000, B2 = 12,721,806,059,616 (stage 2)
B1 = 1,000,000,000 (stage 1)
B1 = 100,000,000, B2 = 2,000,000,000 (stage 2)
B1 = 16,777,216, B2 = 1,677,721,600 (stage 2)
B1 = 100,000,000 (stage 1)
B1 = 8,388,608, B2 = 838,860,800 (stage 2)
B1 = 4,194,304, B2 = 419,430,400 (stage 2)
B1 = 17,101,169 (stage 1)
B1 = 16,777,216 (stage 1)
B1 = 2,097,152, B2 = 209,715,200 (stage 2)
B1 = 8,388,608 (stage 1)
B1 = 1,048,576, B2 = 104,857,600 (stage 2)
B1 = 1,000,000, B2 = 100,000,000 (stage 2)
B1 = 4,194,304 (stage 1)
B1 = 2,097,152 (stage 1)
B1 = 262,144, B2 = 26,214,400 (stage 2)
B1 = 1,048,576 (stage 1)
B1 = 1,000,000 (stage 1)
B1 = 131,072, B2 = 13,107,200 (stage 2)
B1 = 100,000, B2 = 10,000,000 (stage 2)
B1 = 65,536, B2 = 6,553,600 (stage 2)
B1 = 262,144 (stage 1)
B1 = 32,768, B2 = 3,276,800 (stage 2)
B1 = 131,072 (stage 1)
B1 = 16,384, B2 = 1,638,400 (stage 2)
B1 = 100,000 (stage 1)
B1 = 65,536 (stage 1)
B1 = 32,768 (stage 1)
B1 = 16,384 (stage 1)
103
104
105
106
107
108
109
103
104
105
106
107
108
109
1010
1011
1012
1013
1014
TF factor-bounds graph:
263
262
261
260
259
258
257
256
254
253
250
260
270
280
290
2100
2110
2120
2130
2140
Last modified: 2020-04-17T13:45:46+00:00