is 2 5268547 - 1
has 1585991 decimal digits
takes 0.832 GHz-days to do one PRP test
Last-known PrimeNet details:
0 L-L tests remaining
ResidueStatus
L-L6C61F54F439E4EB9double-checked
PRP-unknown--unknown-

 Trial FactoringP-1 FactoringCombined
LimitGHz-daysProbabilityB1B2GHz-daysProbabilityGHz-daysProbabilityProb over default TF
Actual2675.639965.6716%600009750000.02522.3230%5.665067.9946%5.0914%
PrimeNet2620.116662.9032%220005000000.01103.0094%0.127665.9127%3.0094%
GPU722662.803165.1515%300006000000.01401.9918%2.817167.1433%1.9918%
Difference+1+2.8367+0.5201%+30000+375000+0.0112+0.3312%+2.8479+0.8513%+0.8513%

Known prime factors (1 factor, 82.3 bits, 0.00156275% known):
Remaining cofactor is not a probable-prime

P-1GHz-days
exponentfactordigitsbits*kdate foundmin B1min B2min. TFmin. P-1normal P-1
526854760959688983703217187887692582.334578524676573097072
24 × 32 × 7 × 13 × 113 × 229 × 14827 × 115067
2009-11-0114827115067246,7510.00460.0069

P-1 results:
 GHz-DaysworthFactor
probability
dateuseridcompidb1b2estagefactordigitsbits*spentsaved
2000-05-10T00:00:00ANONYMOUSv4_computers20000160000---0.006--1.046%
2009-11-01T08:40:00harleeP4_2600600009750002582.3340.0251.6640.0502.323%


Trial Factoring results:
 BitsFactorGHz-Daysworth
dateuseridcompidfromtofactorbits*digitsspentsaved
1998-02-19T00:00:00ANONYMOUSv4_computers?261--0.029--
1998-03-23T00:00:00ANONYMOUSv4_computers?262--0.058--
2009-06-07T01:36:00GrunwalderGIMPManual testing262263--0.186--


ECM factoring results:
Exponent "5268547" not found


Lucas-Lehmer results:
dateuseridcompidres64spent (GHz-days)
1998-10-18T00:00:00ANONYMOUSv4_computers6C61F54F439E4EB90.832
2000-11-05T00:00:00ANONYMOUSv4_computers6C61F54F439E4EB90.832


PRP results:
dateuseridcompidcofactorsres64PRP
2017-09-20T06:30:30kkmrkkblmbrbkManual testing
6095968898370321718788769
6543988812FC06__no
2018-06-05T19:20:53Martin RussellThunderChoad
6095968898370321718788769
6543988812FC06__no


P-1 factor-bounds graph:
B1 = 60000, B2 = 975000 (stage 2)
B1 = 60000 (stage 1)
B1 = 20000, B2 = 160000 (stage 2)
B1 = 20000 (stage 1)
103
104
105
103
104
105
106
TF factor-bounds graph:
267
263
262
261
250
260
270
280
290
2100
Last modified: 2018-06-05T19:20:53+00:00