is 251738277-1
has 15,574,774 decimal digits
takes 99.117 GHz-days to do one L-L test
Last-known PrimeNet details:
-unknown- L-L tests remaining
ResidueStatus
L-L-unknown--unknown-
PRP-unknown--unknown-

 Trial FactoringP-1 FactoringCombined
LimitGHz-daysProbabilityB1B2GHz-daysProbabilityGHz-daysProbabilityProb over default TF
Actual2681.152061.7647%----1.152061.7647%-0.5541%
PrimeNet2692.307562.3188%220,0009,000,0001.93995.1540%4.247467.4728%5.1540%
GPU7227336.971664.3836%340,00011,000,0002.55783.8027%39.529368.1863%3.8027%
Difference-5-35.8195-2.6189%-340,000-11,000,000-2.5578-3.8027%-38.3773-6.4216%-6.4216%

Known prime factors (1 factor, 120.8 bits, 0.00023339% known):
Remaining cofactor is PRP status unknown

GHz-days
exponentfactordigitsbits*kmin B1min B2date foundmin. TFmin. P-1normal P-1
51738277223769112248637197503615879666140252137120.75121625102846837864112059228380
22 × 3 × 5 × 11 × 2039 × 4919 × 28549 × 29209 × 48883 × 80141
48,88380,1412010-03-082.836e+90.14050.2764

P-1 results:
 GHz-DaysworthFactor
probability
dateuseridcompidb1b2estagefactordigitsbits*spentsaved
2010-03-08T06:47:001997rj7compa-223,769,112,248,637,184-503,615,879,666,140,22437120.751-198.2-nan%


Trial Factoring results:
 BitsFactorGHz-Daysworth
dateuseridcompidfromtofactorbits*digitsspentsaved
2000-02-16T00:00:00ANONYMOUSv4_computers?254--4.63843e-5--
2000-04-27T00:00:00ANONYMOUSv4_computers?256--0.000--
2001-05-27T00:00:00ANONYMOUSv4_computers?257--0.000--
2002-03-10T00:00:00ANONYMOUSv4_computers?258--0.001--
2003-11-28T00:00:00ANONYMOUSv4_computers?260--0.001--
2009-04-11T02:01:00LillokiLegion263264--0.038--
2009-06-11T19:45:00Johannes WeingartnerWaynemachine_V_00264265--0.072--
2009-06-11T23:54:00lindedkltvh0m-SH135265266--0.144--
2009-06-13T13:56:00Sturle Sundegoose.ifi266267--0.289--
2009-06-14T22:45:00Sturle Sundegoose.ifi267268--0.578--


ECM factoring results:
Exponent "51738277" not found


Lucas-Lehmer results:
Exponent "51738277" not found


PRP results:
Exponent "51738277" not found


P-1 factor-bounds graph:
TF factor-bounds graph:
268
267
266
265
264
260
258
257
256
254
250
260
270
280
290
2100
2110
2120
2130
Last modified: 2010-03-08T06:47:59+00:00