is 2433861-1
has 130,606 decimal digits
takes 0.005 GHz-days to do one L-L test
Last-known PrimeNet details:
0 L-L tests remaining
ResidueStatus
L-LE1F0DC78A8CB0D__double-checked
PRP-unknown--unknown-

 Trial FactoringP-1 FactoringCombined
LimitGHz-daysProbabilityB1B2GHz-daysProbabilityGHz-daysProbabilityProb over default TF
Actual2633.678669.8413%3,000,000100,000,0000.14159.9152%3.820179.7565%27.2565%
PrimeNet2400.000052.5000%4,500140,0000.000218.0835%0.000270.5835%18.0835%
GPU722440.000056.8182%8,000240,0000.000413.5872%0.000470.4054%13.5872%
Difference+19+3.6786+13.0231%+2,992,000+99,760,000+0.1411-3.6720%+3.8198+9.3511%+9.3511%

Known prime factors (3 factors, 191.4 bits, 0.04411780% known):
Remaining cofactor is not a probable-prime

GHz-days
exponentfactordigitsbits*kmin B1min B2date foundmin. TFmin. P-1normal P-1
43386195384240810330631653.08310992488471
37 × 4751 × 62533
4,75162,5332003-09-290.00420.00010.0002
43386115348719671681510571960.4131768852198248
23 × 3 × 195869 × 376283
195,869376,2832014-11-140.41750.00350.0068
4338612848288934129527941641212477.914328249016865946460
22 × 5 × 1217 × 2287 × 5896804037
2,2875.89680e+92018-08-10131,3245.486710.248

4 Composite Factors:
exponentprime factorscomposite factordigitsbits*
4338611464025973293928089018488419539759135113.495
433861271681877590410850687420047083124933262340130.997
43386143717588393906647794835886992580737762589742138.327
43386141699689790113071761731590742906743634306735233521
02032511
58191.410
P-1 results:
 GHz-DaysworthFactor
probability
dateuseridcompidb1b2estagefactordigitsbits*spentsaved
2002-12-09T00:00:00Criswellv4_computers10,000340,000---0.000--1.154%
2002-12-09T00:00:00Criswellv4_computers10,000370,000---0.001--1.180%
2014-11-14T22:09:00alpertronManual testing3,000,000100,000,000121960.4130.0510.0100.1029.915%


Trial Factoring results:
 BitsFactorGHz-Daysworth
dateuseridcompidfromtofactorbits*digitsspentsaved
2003-09-29T00:00:00Waynev4_computers??53.083160.0010.0110.003


ECM factoring results:
ECM Summary

B1B2factorcurvesGHz-days
50,0005,000,0002813.612
250,00025,000,000291.864
250,00025,000,000150.964


Lucas-Lehmer results:
dateuseridcompidres64spent (GHz-days)
2002-12-09T00:00:00Criswellv4_computersE1F0DC78A8CB0D__0.005


PRP results:
dateuseridcompidcofactorsres64PRP
2017-09-24T01:12:11Oliver KruseDoppelherz
9538424081033063
1534871967168151057
327F2176AC3A89__no
2017-09-24T17:47:30Oliver KruseManual testing
9538424081033063
1534871967168151057
327F2176AC3A89__no
2017-11-09T07:02:35kkmrkkblmbrbkc4.large
9538424081033063
1534871967168151057
327F2176AC3A89__no
2018-08-11T11:17:31Gabriel Lignelli3317U
9538424081033063
1534871967168151057
284828893412952794164121
39051437A76A24__no
2018-08-12T01:27:04ANONYMOUSdory
9538424081033063
1534871967168151057
284828893412952794164121
39051437A76A24__no
2018-08-14T14:43:55GunnarLuSierpinski
9538424081033063
1534871967168151057
284828893412952794164121
39051437A76A24__no


P-1 factor-bounds graph:
B1 = 3,000,000, B2 = 100,000,000 (stage 2)
B1 = 3,000,000 (stage 1)
B1 = 10,000, B2 = 370,000 (stage 2)
B1 = 10,000, B2 = 340,000 (stage 2)
B1 = 10,000 (stage 1)
102
103
104
105
106
107
102
103
104
105
106
107
108
109
1010
TF factor-bounds graph:
263
2
250
260
270
280
290
2100
Last modified: 2018-08-14T14:43:55+00:00