is 23877-1
has 1,168 decimal digits
takes 0.000 GHz-days to do one L-L test
Last-known PrimeNet details:
-unknown- L-L tests remaining
ResidueStatus
L-L-unknown--unknown-
PRP-unknown--unknown-

 Trial FactoringP-1 FactoringCombined
LimitGHz-daysProbabilityB1B2GHz-daysProbabilityGHz-daysProbabilityProb over default TF
Actual263411.662880.9524%100,000,000,000100,000,000,0007.205719.2428%418.8685100.1952%30.1952%
PrimeNet2400.000070.0000%50010,0000.00002.3657%0.000072.3657%2.3657%
GPU722440.000672.7273%50010,0000.00000.9401%0.000673.6674%0.9401%
Difference+19+411.6622+8.2251%+99,999,999,500+99,999,990,000+7.2057+18.3027%+418.8679+26.5278%+26.5278%

Known prime factors (4 factors, 404.5 bits, 10.43401239% known):
Remaining cofactor is not a probable-prime

GHz-days
exponentfactordigitsbits*kmin B1min B2date foundmin. TFmin. P-1normal P-1
38771185281014871236.78615286059
32 × 149 × 11399
14911,399-3.945e-65.490e-88.359e-8
38772094681187156270084812167.50527014201536707120
24 × 3 × 5 × 1013 × 111114682201
1,0131.11115e+11-7,864.40.43620.8147
38772677246100547406966211487030151978150111144144144.2643452729043780509370920153508062907080360
23 × 5 × 432 × 13367 × 116471 × 64068229 × 67546931 × 6928919287
67,546,9316.92892e+92016-12-054.243e+130.03180.0508
38778954292913231650701649213177490763483064980689747155.97111547966099086472403468162467746664280455224
23 × 7 × 206213680340829864347645758352619005008129
82.06214e+412019-11-044.144e+138.096e+291.512e+30

11 Composite Factors:
exponentprime factorscomposite factordigitsbits*
38772482785843341680215407417771124732104.292
387731732889751135805914580591461503789521018020821448
12767
55181.050
387710613353391638459795056126977753229581258396370044
568555839
59192.758
387756079770402041372489457316193893042644709401580231
82099433131121
64211.769
387718756388909633050210664248742565412684359059341723
090205020431293457
68223.477
387766470287175808185904031666113844031282153348341247
5545180291890680066076927
75248.555
387722231591682106274472989788046414053713877476832036
09849271917317259381975070559
79260.263
387723972845785108717555753775528597587684231055748167
57232808297070383612785164445257527408577
91300.235
387728414558981495662677768020866370319438199198852759
60727185431211740736382216820954682645344987702539
99
102337.021
387750215469068665714057710047531482325821073336644611
02206049917503819902071837157891405881053294751328
22731141537
111367.740
387759519442139881191275095790886311309424669810490821
71274425642072807430629411162150901991945935707411
5655481524612897165519
122404.527
P-1 results:
 GHz-DaysworthFactor
probability
dateuseridcompidb1b2estagefactordigitsbits*spentsaved
2016-12-06T04:35:34kkmrkkblmbrbkManual testing100,000,000,000100,000,000,00044144.2647.2063.85331e-714.4119.243%


Trial Factoring results:
 BitsFactorGHz-Daysworth
dateuseridcompidfromtofactorbits*digitsspentsaved
2005-03-20T00:00:00ANONYMOUSv4_computers??104.292325.73034e+124.58655e-71.36415e+13


ECM factoring results:
ECM Summary

B1B2factorcurvesGHz-days
10.00000e+0
3,000,000300,000,0002,2527.005
11,000,0001,100,000,0006,14870.12
44,000,0004,400,000,0001004.562
110,000,00011,000,000,00020022.81


Lucas-Lehmer results:
Exponent "3877" not found


PRP results:
dateuseridcompidcofactorsres64PRP
2017-09-20T19:46:00kkmrkkblmbrbkManual testing
118528101487
209468118715627008481
26772461005474069662114870301519781501111441
9B147773329DFA38no
2017-09-26T00:20:43George WoltmanManual testing
118528101487
209468118715627008481
26772461005474069662114870301519781501111441
9B147773329DFA__no
2017-10-02T09:55:03kkmrkkblmbrbkManual testing
118528101487
209468118715627008481
26772461005474069662114870301519781501111441
9B147773329DFA__no
2019-11-04T23:38:46nordinordiputer
118528101487
209468118715627008481
26772461005474069662114870301519781501111441
89542929132316507016492131774907634830649806897
AE96B4E6E1BB1EF4no
2019-11-05T17:49:06mnd975211corner
118528101487
209468118715627008481
26772461005474069662114870301519781501111441
89542929132316507016492131774907634830649806897
AE96B4E6E1BB1EF4no
2020-04-17T12:32:07Oliver KruseIOS-1
118528101487
209468118715627008481
26772461005474069662114870301519781501111441
89542929132316507016492131774907634830649806897
AE96B4E6E1BB1EF4no


P-1 factor-bounds graph:
B1 = 100,000,000,000 (stage 1)
100
101
102
103
104
105
106
107
108
109
1010
1011
100
101
102
103
104
105
106
107
108
109
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
TF factor-bounds graph:
263
2
230
240
250
260
270
280
290
2100
2110
2120
2130
2140
2150
2160
Last modified: 2020-04-17T12:32:07+00:00