is 233871-1
has 10,197 decimal digits
takes 0.000 GHz-days to do one L-L test
Last-known PrimeNet details:
0 L-L tests remaining
ResidueStatus
L-LA7748E1874619201double-checked
PRP-unknown--unknown-

 Trial FactoringP-1 FactoringCombined
LimitGHz-daysProbabilityB1B2GHz-daysProbabilityGHz-daysProbabilityProb over default TF
Actual26347.120474.6032%1,000,000,00076,326,095,473,5903,970.495632.5671%4,017.6160107.1703%47.1703%
PrimeNet2400.000060.0000%50010,0000.00004.2321%0.000064.2321%4.2321%
GPU722440.000163.6364%50010,0000.00001.8223%0.000165.4586%1.8223%
Difference+19+47.1204+10.9668%+999,999,500+76,326,095,463,590+3,970.4956+30.7448%+4,017.6160+41.7116%+41.7116%

Known prime factors (1 factor, 123.4 bits, 0.36423716% known):
Remaining cofactor is not a probable-prime

GHz-days
exponentfactordigitsbits*kmin B1min B2date foundmin. TFmin. P-1normal P-1
338711374998893750514187031184303362907551138123.371202975833862376987250329825420405
5 × 11 × 107 × 313 × 24281 × 353387239 × 12842101487759
353,387,2391.28421e+132016-12-115.121e+12668.221,247.4

P-1 results:
 GHz-DaysworthFactor
probability
dateuseridcompidb1b2estagefactordigitsbits*spentsaved
2001-04-29T00:00:00ANONYMOUSv4_computers100,00010,000,000---0.001--3.216%
2001-08-18T00:00:00Alex Kruppav4_computers1,000,000100,000,000---0.006--6.944%
2002-04-28T00:00:00ANONYMOUSv4_computers16,3841,638,400---9.99982e-5--1.247%
2002-06-09T00:00:00ANONYMOUSv4_computers32,7683,276,800---0.000--1.885%
2002-07-20T00:00:00ANONYMOUSv4_computers65,5366,553,600---0.000--2.671%
2003-02-02T00:00:00ANONYMOUSv4_computers131,07213,107,200---0.001--3.590%
2003-03-27T00:00:00ANONYMOUSv4_computers262,14426,214,400---0.002--4.630%
2003-04-03T00:00:00ANONYMOUSv4_computers524,28852,428,800---0.003--5.781%
2003-04-27T00:00:00ANONYMOUSv4_computers1,048,576104,857,600---0.006--7.033%
2003-05-19T00:00:00ANONYMOUSv4_computers2,097,152209,715,200---0.013--8.376%
2003-07-13T00:00:00ANONYMOUSv4_computers4,194,304419,430,400---0.026--9.789%
2003-10-08T00:00:00ANONYMOUSv4_computers8,388,608838,860,800---0.051--11.249%
2003-10-08T00:00:00ANONYMOUSv4_computers16,777,2161,677,721,600---0.102--12.735%
2011-09-24T18:59:00Jocelyn LaroucheManual testing53,540,81553,540,815---0.051--7.536%
2012-05-29T00:09:00Jocelyn LaroucheManual testing80,311,22380,311,223---0.077--8.204%
2012-07-03T11:18:00alpertronManual testing100,000,0002,000,000,000---0.194--13.914%
2014-01-25T01:41:00mikrMSI245,000,0009,400,000,000---0.710--16.922%
2016-12-11T11:32:32kkmrkkblmbrbkManual testing1,000,000,00076,326,095,473,59038123.3713,9704.45968e-57,94132.567%


Trial Factoring results:
 BitsFactorGHz-Daysworth
dateuseridcompidfromtofactorbits*digitsspentsaved
1999-10-29T00:00:00ANONYMOUSv4_computers252253--0.018--
2000-03-08T00:00:00ANONYMOUSv4_computers253254--0.035--
2000-10-15T00:00:00ANONYMOUSv4_computers?256--0.283--
2002-12-02T00:00:00ANONYMOUSv4_computers?257--0.567--
2016-02-23T04:50:47LaurVManual testing257258--0.567--
2009-01-15T03:06:00Sturle Sundekinner.ifi258259--1.134--
2009-02-12T01:26:00Sturle Sundedanzi.ifi259260--2.267--
2012-08-02T20:06:00bcp19Manual testing260261--4.535--
2012-08-02T20:06:00bcp19Manual testing261262--9.069--


ECM factoring results:
ECM Summary

B1B2factorcurvesGHz-days
1,000,000100,000,0001341.841
3,000,000300,000,00031913.15
3,000,000400,000,00040018.27


Lucas-Lehmer results:
dateuseridcompidres64spent (GHz-days)
2015-04-11T05:58:00MadPooManual testingA7748E18746192012.22984e-5


PRP results:
dateuseridcompidcofactorsres64PRP
2017-09-21T19:44:51Oliver KruseOllaptop
13749988937505141870311843033629075511
348CCE45FCA665__no
2017-09-21T21:29:06Oliver KruseManual testing
13749988937505141870311843033629075511
348CCE45FCA665__no
2017-10-12T22:21:01kkmrkkblmbrbkManual testing
13749988937505141870311843033629075511
348CCE45FCA665__no
2020-04-17T13:48:08Oliver KruseManual testing
13749988937505141870311843033629075511
377EC411F3C7BF__no


P-1 factor-bounds graph:
B1 = 1,000,000,000, B2 = 76,326,095,473,590 (stage 2)
B1 = 1,000,000,000 (stage 1)
B1 = 245,000,000, B2 = 9,400,000,000 (stage 2)
B1 = 245,000,000 (stage 1)
B1 = 100,000,000, B2 = 2,000,000,000 (stage 2)
B1 = 16,777,216, B2 = 1,677,721,600 (stage 2)
B1 = 100,000,000 (stage 1)
B1 = 80,311,223 (stage 1)
B1 = 8,388,608, B2 = 838,860,800 (stage 2)
B1 = 53,540,815 (stage 1)
B1 = 4,194,304, B2 = 419,430,400 (stage 2)
B1 = 16,777,216 (stage 1)
B1 = 2,097,152, B2 = 209,715,200 (stage 2)
B1 = 8,388,608 (stage 1)
B1 = 1,048,576, B2 = 104,857,600 (stage 2)
B1 = 1,000,000, B2 = 100,000,000 (stage 2)
B1 = 4,194,304 (stage 1)
B1 = 524,288, B2 = 52,428,800 (stage 2)
B1 = 2,097,152 (stage 1)
B1 = 262,144, B2 = 26,214,400 (stage 2)
B1 = 1,048,576 (stage 1)
B1 = 1,000,000 (stage 1)
B1 = 131,072, B2 = 13,107,200 (stage 2)
B1 = 100,000, B2 = 10,000,000 (stage 2)
B1 = 524,288 (stage 1)
B1 = 65,536, B2 = 6,553,600 (stage 2)
B1 = 262,144 (stage 1)
B1 = 32,768, B2 = 3,276,800 (stage 2)
B1 = 131,072 (stage 1)
B1 = 16,384, B2 = 1,638,400 (stage 2)
B1 = 100,000 (stage 1)
B1 = 65,536 (stage 1)
B1 = 32,768 (stage 1)
B1 = 16,384 (stage 1)
103
104
105
106
107
108
109
103
104
105
106
107
108
109
1010
1011
1012
1013
1014
TF factor-bounds graph:
263
262
261
260
259
258
257
256
254
253
250
260
270
280
290
2100
2110
2120
2130
Last modified: 2020-04-17T13:48:08+00:00