is 22848597-1
has 857,514 decimal digits
takes 0.220 GHz-days to do one L-L test
Last-known PrimeNet details:
0 L-L tests remaining
ResidueStatus
L-L6FE537641EB9E01Edouble-checked
PRP-unknown--unknown-

 Trial FactoringP-1 FactoringCombined
LimitGHz-daysProbabilityB1B2GHz-daysProbabilityGHz-daysProbabilityProb over default TF
Actual271167.829469.0141%5,000,000200,000,0001.74987.2571%169.579276.2712%13.5593%
PrimeNet2590.027062.7119%13,000240,0000.00282.9926%0.029865.7044%2.9926%
GPU722630.560365.0794%16,000260,0000.00331.8288%0.563666.9082%1.8288%
Difference+8+167.2691+3.9347%+4,984,000+199,740,000+1.7465+5.4283%+169.0156+9.3630%+9.3630%

Known prime factors (1 factor, 119.2 bits, 0.00418482% known):
Remaining cofactor is not a probable-prime

GHz-days
exponentfactordigitsbits*kmin B1min B2date foundmin. TFmin. P-1normal P-1
284859776798923980925456249765118259142976936119.209134801314438169836326031934772
22 × 3 × 7 × 11 × 13 × 503 × 607 × 1877 × 2293 × 50387 × 169486573
50,387169,486,5732020-03-165.859e+101.03951.9315

P-1 results:
 GHz-DaysworthFactor
probability
dateuseridcompidb1b2estagefactordigitsbits*spentsaved
2003-11-28T00:00:00ANONYMOUSv4_computers2,048204,800---0.001--0.127%
2009-07-03T00:36:00Carsten Kossendeyleela15,000157,500---0.003--0.441%
2010-12-22T11:37:00Jocelyn LaroucheManual testing20,00020,000---0.002--0.159%
2011-01-02T14:09:00Jocelyn LaroucheManual testing30,00030,000---0.003--0.227%
2011-01-26T00:23:00Jocelyn LaroucheManual testing50,00050,000---0.006--0.339%
2011-02-02T02:36:00markrManual testing125,0002,781,250---0.030--1.955%
2016-08-31T02:37:25Jocelyn Larouche low4MManual testing187,5005,562,50012---0.054--2.492%
2017-01-10T10:25:10Jocelyn Larouche low 4MManual testing225,000225,000---0.025--0.884%
2017-06-10T03:57:40Jocelyn Larouche low 4MManual testing375,0003,750,0006---0.063--2.550%
2017-06-28T04:14:48Jocelyn Larouche low 4MManual testing450,0004,500,0006---0.075--2.733%
2019-11-01T13:52:01masserManual testing2,850,00028,500,00012---0.476--4.934%
2020-03-16T20:53:59masserManual testing5,000,000200,000,0001236119.2091.7500.4403.5007.257%


Trial Factoring results:
 BitsFactorGHz-Daysworth
dateuseridcompidfromtofactorbits*digitsspentsaved
2016-02-23T16:29:23Mark RoseManual testing21260--0.054--
2009-02-13T16:05:00Sturle Sundegiasha.ifi260261--0.054--
2012-02-05T21:46:00Grant McCrackenthumper261262--0.108--
2013-01-10T10:23:00dbaughManual testing262263--0.345--
2015-04-21T09:19:00VictordeHollanderManual testing263264--0.689--
2015-04-21T09:19:00VictordeHollanderManual testing264265--1.312--
2016-02-16T09:37:53ramgeisManual testing265266--2.623--
2016-03-22T04:53:16YxinityManual testing266267--5.247--
2016-03-22T04:53:16YxinityManual testing267268--10.49--
2016-03-22T04:53:16YxinityManual testing268269--20.99--
2016-03-22T04:53:16YxinityManual testing269270--41.97--
2016-04-18T09:40:50ramgeisManual testing270271--83.95--


ECM factoring results:
ECM Summary

B1B2factorcurvesGHz-days
50,0005,000,000181.881


Lucas-Lehmer results:
dateuseridcompidres64spent (GHz-days)
1999-07-12T00:00:00ANONYMOUSv4_computers6FE537641EB9E01E0.220
2018-09-16T04:30:36kkmrkkblmbrbkold6FE537641EB9E01E0.220


PRP results:
dateuseridcompidcofactorsres64PRP
2020-03-18T08:57:11Jinyuan WangManual testing
767989239809254562497651182591429769
7D39B651FB6C50FBno
2020-03-19T14:19:44Team_InspectorSpudBoy4
767989239809254562497651182591429769
7D39B651FB6C50FBno


P-1 factor-bounds graph:
B1 = 5,000,000, B2 = 200,000,000 (stage 2)
B1 = 5,000,000 (stage 1)
B1 = 2,850,000, B2 = 28,500,000 (stage 2)
B1 = 2,850,000 (stage 1)
B1 = 450,000, B2 = 4,500,000 (stage 2)
B1 = 375,000, B2 = 3,750,000 (stage 2)
B1 = 187,500, B2 = 5,562,500 (stage 2)
B1 = 450,000 (stage 1)
B1 = 375,000 (stage 1)
B1 = 125,000, B2 = 2,781,250 (stage 2)
B1 = 225,000 (stage 1)
B1 = 187,500 (stage 1)
B1 = 125,000 (stage 1)
B1 = 50,000 (stage 1)
B1 = 30,000 (stage 1)
B1 = 15,000, B2 = 157,500 (stage 2)
B1 = 20,000 (stage 1)
B1 = 15,000 (stage 1)
B1 = 2,048, B2 = 204,800 (stage 2)
B1 = 2,048 (stage 1)
102
103
104
105
106
107
102
103
104
105
106
107
108
109
TF factor-bounds graph:
271
270
269
268
267
266
265
264
263
262
261
260
250
260
270
280
290
2100
2110
2120
Last modified: 2020-03-19T14:19:44+00:00