is 226539-1
has 7,990 decimal digits
takes 0.000 GHz-days to do one L-L test
Last-known PrimeNet details:
-unknown- L-L tests remaining
ResidueStatus
L-L-unknown--unknown-
PRP-unknown--unknown-

 Trial FactoringP-1 FactoringCombined
LimitGHz-daysProbabilityB1B2GHz-daysProbabilityGHz-daysProbabilityProb over default TF
Actualunknown500,000,00018,755,543,263,242671.1857196.4995%671.1857196.4995%133.9995%
PrimeNet2400.000062.5000%50010,0000.00003.9768%0.000066.4768%3.9768%
GPU722440.000165.9091%50010,0000.00001.6962%0.000167.6053%1.6962%
Difference-44-0.0001-65.9091%+499,999,500+18,755,543,253,242+671.1857+194.8033%+671.1857+128.8942%+128.8942%

Known prime factors (2 factors, 152.2 bits, 0.57340594% known):
Remaining cofactor is not a probable-prime

GHz-days
exponentfactordigitsbits*kmin B1min B2date foundmin. TFmin. P-1normal P-1
26539128946100871133.586242937
32 × 26993
926,993-6.829e-89.711e-71.804e-6
2653950025709830444012644216374207762579936118.5909424942505453109130754055203241
32 × 11 × 19 × 59 × 2843 × 9041 × 1852987 × 1783085634059
1,852,9871.78309e+122016-12-205.477e+1263.781119.12

1 Composite Factors:
exponentprime factorscomposite factordigitsbits*
26539645062022588978425130868001069981996479683451346152.176
P-1 results:
 GHz-DaysworthFactor
probability
dateuseridcompidb1b2estagefactordigitsbits*spentsaved
2016-12-15T22:44:24kkmrkkblmbrbkManual testing500,000,00010,000,000,00012---0.668--42.710%
2016-12-20T22:48:06kkmrkkblmbrbkManual testing500,000,00018,755,543,263,24236118.590671.22.40325e-51,34262.101%


Trial Factoring results:
Exponent "26539" not found


ECM factoring results:
ECM Summary

B1B2factorcurvesGHz-days
50,0005,000,0001890.089
200,00020,000,00010.002
250,00025,000,0006021.422
1,000,000100,000,0002512.371
3,000,000300,000,00050014.17


Lucas-Lehmer results:
Exponent "26539" not found


PRP results:
dateuseridcompidcofactorsres64PRP
2017-09-21T19:36:00Oliver KruseOllaptop44D35460763603__?
2017-09-21T21:38:42Oliver KruseManual testing44D35460763603__?
2017-10-02T10:28:27kkmrkkblmbrbkManual testing
12894610087
500257098304440126442163742077625799
44D35460763603__no
2017-12-07T02:55:08ATHManual testing
12894610087
500257098304440126442163742077625799
44D35460763603__no
2020-04-17T13:49:36Oliver KruseManual testing
12894610087
500257098304440126442163742077625799
6213FFB851A74F__no


P-1 factor-bounds graph:
B1 = 500,000,000, B2 = 18,755,543,263,242 (stage 2)
B1 = 500,000,000, B2 = 10,000,000,000 (stage 2)
B1 = 500,000,000 (stage 1)
100
101
102
103
104
105
106
107
108
109
100
101
102
103
104
105
106
107
108
109
1010
1011
1012
1013
1014
TF factor-bounds graph:
230
240
250
260
270
280
290
2100
2110
2120
Last modified: 2020-04-17T13:49:36+00:00