is 2 255971 - 1
has 77055 decimal digits
takes 0.002 GHz-days to do one PRP test
Last-known PrimeNet details:
Exponent is not assigned to anyone
0 primality tests remaining
ResidueStatus
L-L9F87C03579D4F245double-checked
PRP-unknown--unknown-

 Trial FactoringP-1 FactoringCombined
LimitGHz-daysProbabilityB1B2GHz-daysProbabilityGHz-daysProbabilityProb over default TF
Actual267116.083173.1343%30000000100358126969105,417.947323.4370%5,534.030479.4308%6.2965%
PrimeNet2400.000055.0000%2600700000.000114.2534%0.000161.4140%6.4140%
GPU722440.000059.0909%45001100000.000110.1972%0.000163.2625%4.1716%
Difference+23+116.0831+14.0434%+29995500+10035812586910+5,417.9472+13.2398%+5,534.0303+16.1683%+16.1683%

Known prime factors (3 factors, 275.6 bits, 0.10765616% known):
Remaining cofactor is not a probable-prime

P-1GHz-days
exponentfactordigitsbits*kdate foundmin B1min B2min. TFmin. P-1normal P-1
25597136204331462717916313740632581.5827071959609236576861
7071959609236576861
2020-10-28170719596092365768612,311,2083.818e+97.130e+9
2559713576304854119926872871290732788.209698576177402894639016
23 × 34 × 7 × 197 × 307 × 541 × 4706942129
2020-02-095414706942129351,757,5242.54104.7458
2559716953549822281438572373379246304132105.778135826906608198557109465120
25 × 32 × 5 × 13 × 29 × 659 × 13418833 × 28293182767
2011-09-2113418833282931827676.318e+1115.39928.527

4 Composite Factors:
exponentprime factorscomposite factordigitsbits*
25597112947772635028487640231584467719616546428734254335
99
52169.791
25597125174862260840046198022200149131595678730845421997
3505583
57187.360
25597124868013982789863606022678831332064258353727709854
349090993
59193.986
25597190032982105242813841479058542859918826162320152474
687263149806014193602263607114559
83275.569
P-1 results:
 GHz-DaysworthFactor
probability
dateuseridcompidb1b2estagefactordigitsbits*spentsaved
2000-12-14T00:00:00ANONYMOUSv4_computers950003800000---0.003--2.200%
2001-06-17T00:00:00ANONYMOUSv4_computers10000010000000---0.006--2.721%
2002-06-02T00:00:00ANONYMOUSv4_computers327683276800---0.002--1.559%
2002-08-10T00:00:00ANONYMOUSv4_computers655366553600---0.004--2.242%
2003-03-07T00:00:00ANONYMOUSv4_computers13107213107200---0.008--3.052%
2003-11-08T00:00:00ANONYMOUSv4_computers26214426214400---0.017--3.979%
2011-02-09T22:33:00Jocelyn LaroucheManual testing20000002000000---0.020--2.609%
2021-09-05T06:34:05Oliver KruseOllaptop30000000300000000024---1.901--12.590%
2022-04-27T03:46:48Oliver KruseThreadripper-PC3000000010035812696910-
skipped known factor: 357630485411992687287129073
skipped known factor: 69535498222814385723733792463041
--5,418--23.437%


Trial Factoring results:
 BitsFactorGHz-Daysworth
dateuseridcompidfromtofactorbits*digitsspentsaved
1999-11-24T00:00:00ANONYMOUSv4_computers252253--0.002--
2000-04-27T00:00:00ANONYMOUSv4_computers21254--0.009--
2000-12-14T00:00:00ANONYMOUSv4_computers21255--0.019--
2001-02-18T00:00:00ANONYMOUSv4_computers21256--0.038--
2002-03-16T00:00:00ANONYMOUSv4_computers21257--0.075--
2022-03-07T05:52:30LordJuliusManual testing257258--0.075--
2009-01-01T20:16:00Sturle Sundegobi.ifi258259--0.150--
2009-01-26T05:01:00Sturle Sundeginjtje.ifi259260--0.300--


ECM factoring results:

Old Calculation Method

Total ECM effort:11.380 GHz-days
Estimated T-Level:26.969
DigitsB1CurvesCompleteFacMiss
2011000535 / 1005.3500.462%
2550000535 / 2801.91114.747%
30250000252 / 6400.39467.431%

New Calculation Method

Total ECM effort:11.380 GHz-days
Estimated T-Level:26.969
DigitsB1CompleteFacMiss
201100030.1290.000%
25500003.8852.056%
302500000.38168.304%
3510000000.03097.061%
4030000000.00299.807%


ECM Summary

B1B2factorcurvesGHz-days
10.00000e+0
5000050000002832.062
250000250000002228.088
2500002500000060.219
2500002500000030.109
25000038500000210.902


Lucas-Lehmer results:
dateuseridcompidres64spent (GHz-days)
2001-10-13T00:00:00ANONYMOUSv4_computers9F87C03579D4F2450.002


PRP results:
dateuseridcompidcofactorsres64PRP
2017-09-22T07:47:02Oliver KruseOllaptop
69535498222814385723733792463041
2A686C67E86D9B__no
2017-09-22T10:06:35Oliver KruseManual testing
69535498222814385723733792463041
2A686C67E86D9B__no
2017-10-12T17:07:04Oliver KruseGTX-12A686C67E86D9B__no
2017-11-06T16:15:09kkmrkkblmbrbkc4.xlarge
69535498222814385723733792463041
2A686C67E86D9B__no
2020-02-10T05:08:52Jinyuan WangManual testing
357630485411992687287129073
69535498222814385723733792463041
8046D386AF5CF796no
2020-02-11T04:46:12Jinyuan WangManual testing
357630485411992687287129073
69535498222814385723733792463041
8046D386AF5CF796no
2020-02-14T13:27:37Alvin BunkBADCAT
357630485411992687287129073
69535498222814385723733792463041
8046D386AF5CF796no
2020-10-28T13:30:31mrhlanai
3620433146271791631374063
357630485411992687287129073
69535498222814385723733792463041
8046D386AF5CF796no


P-1 factor-bounds graph:
B1 = 30000000, B2 = 10035812696910 (P-1 stage 2)
B1 = 30000000, B2 = 3000000000 (P-1 stage 2)
B1 = 30000000 (P-1 stage 1)
B1 = 2000000 (P-1 stage 1)
B1 = 262144, B2 = 26214400 (P-1 stage 2)
B1 = 131072, B2 = 13107200 (P-1 stage 2)
B1 = 100000, B2 = 10000000 (P-1 stage 2)
B1 = 65536, B2 = 6553600 (P-1 stage 2)
B1 = 95000, B2 = 3800000 (P-1 stage 2)
B1 = 262144 (P-1 stage 1)
B1 = 32768, B2 = 3276800 (P-1 stage 2)
B1 = 131072 (P-1 stage 1)
B1 = 100000 (P-1 stage 1)
B1 = 95000 (P-1 stage 1)
B1 = 65536 (P-1 stage 1)
B1 = 32768 (P-1 stage 1)
100
101
102
103
104
105
106
107
108
100
101
102
103
104
105
106
107
108
109
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
TF factor-bounds graph:
267
260
259
258
257
256
255
254
253
250
260
270
280
290
2100
2110
Last modified: 2022-05-24T15:21:44+00:00