is 2 2497289 - 1
has 751759 decimal digits
takes 0.173 GHz-days to do one PRP test
Last-known PrimeNet details:
Exponent is not assigned to anyone
0 primality tests remaining
ResidueStatus
L-L7F63FF31A0601E6Edouble-checked
PRP-unknown--unknown-

 Trial FactoringP-1 FactoringCombined
LimitGHz-daysProbabilityB1B2GHz-daysProbabilityGHz-daysProbabilityProb over default TF
Actual26711.898567.1642%2000000600000000.51907.6463%12.417469.6749%2.5107%
PrimeNet2590.030862.7119%100001800000.00192.5374%0.032763.6580%0.9461%
GPU722630.639165.0794%110001600000.00191.3818%0.641065.5619%0.4825%
Difference+4+11.2594+2.0848%+1989000+59840000+0.5170+6.2646%+11.7764+4.1130%+4.1130%

Known prime factors (1 factor, 67.5 bits, 0.00270373% known):
Remaining cofactor is not a probable-prime

P-1GHz-days
exponentfactordigitsbits*kdate foundmin B1min B2min. TFmin. P-1normal P-1
24972892116098951782379772332167.52042367922811144
23 × 32 × 7 × 84063338911
2009-04-2998406333891112.116460.63860.32

P-1 results:
 GHz-DaysworthFactor
probability
dateuseridcompidb1b2estagefactordigitsbits*spentsaved
2003-10-23T00:00:00ANONYMOUSv4_computers2048204800---0.001--0.291%
2003-10-31T00:00:00Team Prime Ribv4_computers15000228750---0.003--0.920%
2019-07-04T12:38:10alpertronManual testing20000006000000012---0.519--7.646%


Trial Factoring results:
 BitsFactorGHz-Daysworth
dateuseridcompidfromtofactorbits*digitsspentsaved
1999-05-02T00:00:00ANONYMOUSv4_computers21259--0.031--
2022-03-10T05:53:03LordJuliusManual testing21260--0.062--
2009-01-11T09:54:00Sturle Sundeeberlin.ifi260261--0.062--


ECM factoring results:

Old Calculation Method

Total ECM effort:0.000 GHz-days
DigitsB1CurvesCompleteFacMiss

New Calculation Method

Total ECM effort:0.000 GHz-days
DigitsB1CompleteFacMiss


ECM Summary

B1B2factorcurvesGHz-days
10.00000e+0


Lucas-Lehmer results:
dateuseridcompidres64spent (GHz-days)
1999-05-02T00:00:00ANONYMOUSv4_computers7F63FF31A0601E6E0.173


PRP results:
dateuseridcompidcofactorsres64PRP
2017-10-14T10:51:33kkmrkkblmbrbkc4.xlargeB1776E3727276E__no
2017-11-07T04:25:13Oliver KruseThreadripper
211609895178237977233
B1776E3727276E__no


P-1 factor-bounds graph:
B1 = 2000000, B2 = 60000000 (P-1 stage 2)
B1 = 2000000 (P-1 stage 1)
B1 = 15000, B2 = 228750 (P-1 stage 2)
B1 = 15000 (P-1 stage 1)
B1 = 2048, B2 = 204800 (P-1 stage 2)
B1 = 2048 (P-1 stage 1)
100
101
102
103
104
105
106
107
100
101
102
103
104
105
106
107
108
109
1010
1011
TF factor-bounds graph:
267
261
260
259
250
260
270
280
290
2100
Last modified: 2022-03-10T05:53:03+00:00