is 2 2213923 - 1
has 666458 decimal digits
takes 0.146 GHz-days to do one PRP test
Last-known PrimeNet details:
Exponent is not assigned to anyone
0 primality tests remaining
ResidueStatus
L-L56195907D96C365Cdouble-checked
PRP-unknown--unknown-

 Trial FactoringP-1 FactoringCombined
LimitGHz-daysProbabilityB1B2GHz-daysProbabilityGHz-daysProbabilityProb over default TF
Actual26713.421467.1642%2000000650000000.51797.6507%13.939369.6764%2.5122%
PrimeNet2580.017362.0690%100001800000.00182.8664%0.019263.1562%1.0873%
GPU722620.277564.5161%110001700000.00191.6020%0.279465.0846%0.5685%
Difference+5+13.1439+2.6481%+1989000+64830000+0.5160+6.0487%+13.6599+4.5918%+4.5918%

Known prime factors (1 factor, 109.0 bits, 0.00492520% known):
Remaining cofactor is not a probable-prime

P-1GHz-days
exponentfactordigitsbits*kdate foundmin B1min B2min. TFmin. P-1normal P-1
221392366739158721615809379034097787139933109.040150726016039437255448888913
7 × 21532288005633893635555559
2016-03-247215322880056338936355555596.849e+101.118e+172.089e+17

P-1 results:
 GHz-DaysworthFactor
probability
dateuseridcompidb1b2estagefactordigitsbits*spentsaved
2003-03-16T00:00:00ANONYMOUSv4_computers2048204800---0.001--0.281%
2010-10-10T19:58:00Oscar Östlin7501175011---0.007--0.781%
2010-12-01T17:23:00Oscar Östlin850001593750---0.016--2.456%
2014-05-26T23:57:00Jocelyn LaroucheManual testing113991113991---0.011--0.999%
2014-09-29T22:04:00Jocelyn LaroucheManual testing142982142982---0.014--1.131%
2015-04-26T13:52:00Squeeky_SquirrelP4_26001600004600000---0.038--3.500%
2015-11-14T20:39:29Alexander DubrovinManual testing100000050000006---0.116--4.388%
2015-11-14T20:39:29Alexander DubrovinManual testing15000001000000012---0.187--5.282%
2015-12-11T13:23:51Alexander DubrovinManual testing20000006500000012---0.518--7.651%
2016-04-23T18:02:03alpertronManual testing5000001500000012---0.123--5.186%


Trial Factoring results:
 BitsFactorGHz-Daysworth
dateuseridcompidfromtofactorbits*digitsspentsaved
1999-02-07T00:00:00ANONYMOUSv4_computers21258--0.017--
2016-02-23T16:29:08Mark RoseManual testing258260--0.052--
2009-01-07T18:27:00Sturle Sundegorky.ifi260261--0.069--
2012-04-18T05:47:00Sebastian HornbostelManual testing261262--0.139--
2013-01-23T08:20:00dbaughManual testing262263--0.443--
2015-03-06T11:15:00VictordeHollanderManual testing263264--0.887--
2015-03-06T11:15:00VictordeHollanderManual testing264265--1.688--
2015-10-22T10:17:22ramgeisManual testing265266--3.375--


ECM factoring results:

Old Calculation Method

Total ECM effort:1.714 GHz-days
Estimated T-Level:1.000
DigitsB1CurvesCompleteFacMiss
201100020 / 1000.20081.791%
255000020 / 2800.07193.094%

New Calculation Method

Total ECM effort:1.714 GHz-days
Estimated T-Level:1.000
DigitsB1CompleteFacMiss
20110000.64552.458%
25500000.05894.336%
302500000.00499.642%


ECM Summary

B1B2factorcurvesGHz-days
500005000000181.542
50000500000020.171


Lucas-Lehmer results:
dateuseridcompidres64spent (GHz-days)
1999-02-14T00:00:00ANONYMOUSv4_computers4A89359D3ADFFF__0.146
1999-08-07T00:00:00ANONYMOUSv4_computers56195907D96C365C0.146


PRP results:
dateuseridcompidcofactorsres64PRP
2017-10-09T18:19:15Oliver KruseGTX-3
667391587216158093790340977871399
FCBCF79510B1CA__no
2017-11-20T07:47:47kkmrkkblmbrbkc4.xlarge
667391587216158093790340977871399
FCBCF79510B1CA__no


P-1 factor-bounds graph:
B1 = 2000000, B2 = 65000000 (P-1 stage 2)
B1 = 2000000 (P-1 stage 1)
B1 = 1500000, B2 = 10000000 (P-1 stage 2)
B1 = 1500000 (P-1 stage 1)
B1 = 500000, B2 = 15000000 (P-1 stage 2)
B1 = 1000000, B2 = 5000000 (P-1 stage 2)
B1 = 1000000 (P-1 stage 1)
B1 = 500000 (P-1 stage 1)
B1 = 160000, B2 = 4600000 (P-1 stage 2)
B1 = 85000, B2 = 1593750 (P-1 stage 2)
B1 = 160000 (P-1 stage 1)
B1 = 142982 (P-1 stage 1)
B1 = 113991 (P-1 stage 1)
B1 = 85000 (P-1 stage 1)
B1 = 75011 (P-1 stage 1)
B1 = 2048, B2 = 204800 (P-1 stage 2)
B1 = 2048 (P-1 stage 1)
100
101
102
103
104
105
106
107
100
101
102
103
104
105
106
107
108
109
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
TF factor-bounds graph:
267
266
265
264
263
262
261
260
258
250
260
270
280
290
2100
2110
Last modified: 2017-11-20T07:47:47+00:00