is 2 21017 - 1
has 6327 decimal digits
takes 0.000 GHz-days to do one PRP test
Last-known PrimeNet details:
Exponent is not assigned to anyone
-unknown- primality tests remaining
ResidueStatus
L-L-unknown--unknown-
PRP-unknown--unknown-

 Trial FactoringP-1 FactoringCombined
LimitGHz-daysProbabilityB1B2GHz-daysProbabilityGHz-daysProbabilityProb over default TF
Actual2671,413.803977.6119%500000000100000000000.472213.3830%1,414.276180.6081%2.9962%
PrimeNet2400.000062.5000%500100000.00003.7444%0.000063.9041%1.4041%
GPU722440.000165.9091%500100000.00001.5827%0.000166.4486%0.5395%
Difference+23+1,413.8038+11.7028%+499999500+9999990000+0.4722+11.8003%+1,414.2760+14.1595%+14.1595%

Known prime factors (1 factor, 89.1 bits, 0.42398413% known):
Remaining cofactor is not a probable-prime

P-1GHz-days
exponentfactordigitsbits*kdate foundmin B1min B2min. TFmin. P-1normal P-1
210176674287535597250974030416872789.10915878306931525077256579
3 × 5292768977175025752193
2014-04-23352927689771750257521931.051e+101.338e+112.499e+11

P-1 results:
 GHz-DaysworthFactor
probability
dateuseridcompidb1b2estagefactordigitsbits*spentsaved
2001-04-29T00:00:00ANONYMOUSv4_computers10000010000000---0.000--1.842%
2001-08-18T00:00:00Alex Kruppav4_computers1000000100000000---0.003--4.561%
2002-04-28T00:00:00ANONYMOUSv4_computers163841638400---4.86067e-5--0.604%
2002-06-09T00:00:00ANONYMOUSv4_computers327683276800---9.72135e-5--0.981%
2002-07-20T00:00:00ANONYMOUSv4_computers655366553600---0.000--1.478%
2003-02-02T00:00:00ANONYMOUSv4_computers13107213107200---0.000--2.099%
2003-03-27T00:00:00ANONYMOUSv4_computers26214426214400---0.001--2.837%
2003-04-03T00:00:00ANONYMOUSv4_computers52428852428800---0.002--3.683%
2003-04-27T00:00:00ANONYMOUSv4_computers1048576104857600---0.003--4.628%
2003-05-19T00:00:00ANONYMOUSv4_computers2097152209715200---0.006--5.665%
2003-07-06T00:00:00ANONYMOUSv4_computers4194304419430400---0.012--6.787%
2003-09-29T00:00:00ANONYMOUSv4_computers8388608838860800---0.025--7.989%
2003-09-29T00:00:00ANONYMOUSv4_computers167772161677721600---0.050--9.256%
2016-11-19T00:49:55kkmrkkblmbrbkManual testing5000000001000000000012---0.472--13.383%


Trial Factoring results:
 BitsFactorGHz-Daysworth
dateuseridcompidfromtofactorbits*digitsspentsaved
2003-11-28T00:00:00eteov4_computers??89.109274.54367e+91.39230e-59.40632e+9
1999-10-15T00:00:00ANONYMOUSv4_computers252253--0.029--
2000-03-01T00:00:00ANONYMOUSv4_computers253254--0.057--
2000-08-31T00:00:00ANONYMOUSv4_computers21256--0.457--
2002-11-02T00:00:00ANONYMOUSv4_computers21257--0.913--
2022-06-16T04:12:24LordJuliusManual testing257258--0.913--
2022-06-16T04:12:24LordJuliusManual testing258259--1.827--
2022-06-16T04:12:24LordJuliusManual testing259260--3.654--
2022-06-15T12:26:39LordJuliusWhitebox_TF259260--3.654--


ECM factoring results:

Old Calculation Method

Total ECM effort:41.138 GHz-days
Estimated T-Level:36.678
DigitsB1CurvesCompleteFacMiss
20110003546 / 10035.4600.000%
25500003546 / 28012.6640.000%
302500003416 / 6405.3380.479%
3510000002961 / 15661.89115.086%
4030000001540 / 45880.33671.484%

New Calculation Method

Total ECM effort:41.138 GHz-days
Estimated T-Level:36.678
DigitsB1CompleteFacMiss
2011000591.1970.000%
2550000135.2900.000%
3025000024.2720.000%
3510000003.5572.852%
4030000000.43564.723%
45110000000.04695.472%
50440000000.00499.570%


ECM Summary

B1B2factorcurvesGHz-days
5000050000001300.043
250000250000004550.759
10000001000000001,4219.488
30000003000000001,54030.85


Lucas-Lehmer results:
No L-L results for M21017


PRP results:
dateuseridcompidcofactorsres64PRP
2017-09-21T19:26:18Oliver KruseOliver-PC
667428753559725097403041687
8BC5A0B600036B__no
2017-09-21T20:26:58Oliver KruseManual testing
667428753559725097403041687
8BC5A0B600036B__no
2017-10-12T16:29:43kkmrkkblmbrbkManual testing
667428753559725097403041687
8BC5A0B600036B__no
2020-04-17T13:48:58Oliver KruseManual testing
667428753559725097403041687
D6D02190257876__no


P-1 factor-bounds graph:
B1 = 500000000, B2 = 10000000000 (P-1 stage 2)
B1 = 500000000 (P-1 stage 1)
B1 = 16777216, B2 = 1677721600 (P-1 stage 2)
B1 = 8388608, B2 = 838860800 (P-1 stage 2)
B1 = 4194304, B2 = 419430400 (P-1 stage 2)
B1 = 16777216 (P-1 stage 1)
B1 = 2097152, B2 = 209715200 (P-1 stage 2)
B1 = 8388608 (P-1 stage 1)
B1 = 1048576, B2 = 104857600 (P-1 stage 2)
B1 = 1000000, B2 = 100000000 (P-1 stage 2)
B1 = 4194304 (P-1 stage 1)
B1 = 524288, B2 = 52428800 (P-1 stage 2)
B1 = 2097152 (P-1 stage 1)
B1 = 262144, B2 = 26214400 (P-1 stage 2)
B1 = 1048576 (P-1 stage 1)
B1 = 1000000 (P-1 stage 1)
B1 = 131072, B2 = 13107200 (P-1 stage 2)
B1 = 100000, B2 = 10000000 (P-1 stage 2)
B1 = 524288 (P-1 stage 1)
B1 = 65536, B2 = 6553600 (P-1 stage 2)
B1 = 262144 (P-1 stage 1)
B1 = 32768, B2 = 3276800 (P-1 stage 2)
B1 = 131072 (P-1 stage 1)
B1 = 16384, B2 = 1638400 (P-1 stage 2)
B1 = 100000 (P-1 stage 1)
B1 = 65536 (P-1 stage 1)
B1 = 32768 (P-1 stage 1)
B1 = 16384 (P-1 stage 1)
100
101
102
103
104
105
106
107
108
109
100
101
102
103
104
105
106
107
108
109
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
TF factor-bounds graph:
267
260
259
258
257
256
254
253
2
250
260
270
280
290
2100
Last modified: 2022-06-16T04:12:24+00:00