is 2194717-1
has 58,616 decimal digits
takes 0.001 GHz-days to do one L-L test
Last-known PrimeNet details:
-unknown- L-L tests remaining
ResidueStatus
L-L-unknown--unknown-
PRP-unknown--unknown-

 Trial FactoringP-1 FactoringCombined
LimitGHz-daysProbabilityB1B2GHz-daysProbabilityGHz-daysProbabilityProb over default TF
Actualunknown100,000,0002,000,000,0001.3607169.4667%1.3607169.4667%114.4667%
PrimeNet2400.000055.0000%2,00050,0000.000012.4359%0.000067.4359%12.4359%
GPU722440.000059.0909%3,60080,0000.00018.8260%0.000167.9169%8.8260%
Difference-440.0000-59.0909%+99,996,400+1,999,920,000+1.3607+160.6406%+1.3607+101.5497%+101.5497%

Known prime factors (2 factors, 161.6 bits, 0.08297802% known):
Remaining cofactor is not a probable-prime

GHz-days
exponentfactordigitsbits*kmin B1min B2date foundmin. TFmin. P-1normal P-1
19471711985532331211340.1243077680
24 × 5 × 17 × 31 × 73
3173-8.760e-72.226e-74.218e-7
194717362623013662408374225273959958845258337121.4489311539661724666419092168633423
43 × 107 × 80527 × 3655271 × 67144219 × 102399901
67,144,219102,399,9012017-08-278.294e+110.46180.9137

1 Composite Factors:
exponentprime factorscomposite factordigitsbits*
194717434622985429160112147127388300644680437205360154349161.572
P-1 results:
 GHz-DaysworthFactor
probability
dateuseridcompidb1b2estagefactordigitsbits*spentsaved
2017-08-27T02:20:08kkmrkkblmbrbkManual testing100,000,0002,000,000,0001237121.4481.3610.0022.72141.996%


Trial Factoring results:
Exponent "194717" not found


ECM factoring results:
ECM Summary

B1B2factorcurvesGHz-days
50,0005,000,0002811.371
250,00025,000,0003438.365


Lucas-Lehmer results:
Exponent "194717" not found


PRP results:
dateuseridcompidcofactorsres64PRP
2017-09-22T01:51:11Oliver KruseDoppelherz
1198553233121
3626230136624083742252739599588452583
1034690693393D36no
2017-09-22T10:02:20Oliver KruseManual testing
1198553233121
3626230136624083742252739599588452583
1034690693393D36no
2017-11-06T16:05:57kkmrkkblmbrbkc4.xlarge
1198553233121
3626230136624083742252739599588452583
1034690693393D__no
2020-04-17T19:02:33Oliver KruseAddPrpType5
1198553233121
3626230136624083742252739599588452583
9B70DBD7CD7590__no


P-1 factor-bounds graph:
B1 = 100,000,000, B2 = 2,000,000,000 (stage 2)
B1 = 100,000,000 (stage 1)
100
101
102
103
104
105
106
107
108
100
101
102
103
104
105
106
107
108
109
1010
TF factor-bounds graph:
240
250
260
270
280
290
2100
2110
2120
2130
Last modified: 2020-09-19T00:48:00+00:00