is 2 18133 - 1
has 5459 decimal digits
takes 0.000 GHz-days to do one PRP test
Last-known PrimeNet details:
Exponent is not assigned to anyone
factored, 0 LL tests remaining
ResidueStatus
L-LDCF1E3E341667FCCdouble-checked
PRP-unknown--unknown-

 Trial FactoringP-1 FactoringCombined
LimitGHz-daysProbabilityB1B2GHz-daysProbabilityGHz-daysProbability
Actual2671,638.665377.6119%580000000016258362259549410377,833.129435.7568%379,471.794785.6172%
Target2440.000165.9091%500500000.00001.5143%0.000166.4253%
Difference+23+1,638.6652+11.7028%+5799999500+16258362259499410+377,833.1294+34.2425%+379,471.7946+19.1919%

Known prime factors (2 factors, 227.0 bits, 1.25178252% known):
Remaining cofactor is not a probable-prime

P-1GHz-days
exponentfactordigitsbits*kdate foundmin B1min B2min. TFmin. P-1normal P-1
181338761448347217671607637078026633099.46724158849465663904504596807
151 × 443 × 1289 × 119667259 × 2341355249
2008-04-2411966725923413552497.576e+120.10270.1039
1813324374505293121725877090253687007828860139127.5196721034934407358373432485988807100
22 × 52 × 7 × 131 × 4159 × 123911 × 14561303 × 9767148613429
2023-05-201456130397671486134299.762e+12226.99423.94

1 Composite Factors:
P-1 results:
 GHz-DaysworthFactor
probability
dateuseridcompidb1b2estagefactordigitsbits*spentsaved
2001-04-29ANONYMOUSv4_computers10000010000000---0.000--1.799%
2001-07-29Alex Kruppav4_computers1000000100000000---0.003--4.482%
2001-08-18Alex Kruppav4_computers1000000100000000---0.003--4.482%
2002-04-28ANONYMOUSv4_computers163841638400---4.46828e-5--0.585%
2002-06-09ANONYMOUSv4_computers327683276800---8.93655e-5--0.954%
2002-07-14ANONYMOUSv4_computers655366553600---0.000--1.441%
2003-02-02ANONYMOUSv4_computers13107213107200---0.000--2.052%
2003-03-27ANONYMOUSv4_computers26214426214400---0.001--2.779%
2003-04-03ANONYMOUSv4_computers52428852428800---0.001--3.615%
2003-04-27ANONYMOUSv4_computers1048576104857600---0.003--4.549%
2003-05-19ANONYMOUSv4_computers2097152209715200---0.006--5.576%
2003-07-06ANONYMOUSv4_computers4194304419430400---0.011--6.688%
2003-09-29ANONYMOUSv4_computers8388608838860800---0.023--7.879%
2003-09-29ANONYMOUSv4_computers167772161677721600---0.046--9.138%
2023-05-20JacobZGreatLakes58000000001625836225954941039127.519377,8331.06682e-5755,66635.757%


Trial Factoring results:
 BitsFactorGHz-Daysworth
dateuseridcompidfromtofactorbits*digitsspentsaved
1999-10-15ANONYMOUSv4_computers252253--0.033--
2000-03-08ANONYMOUSv4_computers253254--0.066--
2000-09-23ANONYMOUSv4_computers21256--0.529--
2002-10-19ANONYMOUSv4_computers21257--1.059--


ECM factoring results:
Total ECM effort:18.578 GHz-days
Estimated T-Level:36.066
DigitsB1CompleteFacMiss
2011000308.1880.000%
255000069.6000.000%
3025000012.3140.000%
3510000001.77516.942%
4030000000.21380.806%
45110000000.02297.803%
50440000000.00299.797%


ECM Summary

B1B2factorcurvesGHz-days
500005000000970.030
25000025000000120.018
10000001000000001,0216.267
300000030000000066612.26


Lucas-Lehmer results:
dateuseridcompidres64spent (GHz-days)
1997-01-01George WoltmanDCF1E3E341667FCC5.33412e-6


PRP results:
dateuseridcompidcofactorsres64PRP
2017-09-21Oliver KruseOliver-PC
876144834721767160763707802663
5B01104C412EE5__no
2017-09-21Oliver KruseManual testing
876144834721767160763707802663
5B01104C412EE5__no
2017-10-12kkmrkkblmbrbkManual testing
876144834721767160763707802663
5B01104C412EE5__no
2020-04-17Oliver KruseManual testing
876144834721767160763707802663
9ABB37B89645A8__no
2023-05-20JacobZGreatLakes
876144834721767160763707802663
243745052931217258770902536870078288601
9ABB37B89645A87Bno


P-1 factor-bounds graph:
B1 = 5800000000, B2 = 16258362259549410 (P-1 stage 2)
B1 = 5800000000 (P-1 stage 1)
B1 = 16777216, B2 = 1677721600 (P-1 stage 2)
B1 = 8388608, B2 = 838860800 (P-1 stage 2)
B1 = 4194304, B2 = 419430400 (P-1 stage 2)
B1 = 16777216 (P-1 stage 1)
B1 = 2097152, B2 = 209715200 (P-1 stage 2)
B1 = 8388608 (P-1 stage 1)
B1 = 1048576, B2 = 104857600 (P-1 stage 2)
B1 = 1000000, B2 = 100000000 (P-1 stage 2)
B1 = 4194304 (P-1 stage 1)
B1 = 524288, B2 = 52428800 (P-1 stage 2)
B1 = 2097152 (P-1 stage 1)
B1 = 262144, B2 = 26214400 (P-1 stage 2)
B1 = 1048576 (P-1 stage 1)
B1 = 1000000 (P-1 stage 1)
B1 = 131072, B2 = 13107200 (P-1 stage 2)
B1 = 100000, B2 = 10000000 (P-1 stage 2)
B1 = 524288 (P-1 stage 1)
B1 = 65536, B2 = 6553600 (P-1 stage 2)
B1 = 262144 (P-1 stage 1)
B1 = 32768, B2 = 3276800 (P-1 stage 2)
B1 = 131072 (P-1 stage 1)
B1 = 16384, B2 = 1638400 (P-1 stage 2)
B1 = 100000 (P-1 stage 1)
B1 = 65536 (P-1 stage 1)
B1 = 32768 (P-1 stage 1)
B1 = 16384 (P-1 stage 1)
103
104
105
106
107
108
109
1010
103
104
105
106
107
108
109
1010
1011
1012
1013
1014
1015
1016
1017
TF factor-bounds graph:
257
256
254
253
this exponent TF target: 44
TF double-checked to: 67.9
ECM T-Level=36.07 ~= 103-bit
250
260
270
280
290
2100
2110
2120
2130
Last modified: 2023-09-25T11:53:03+00:00