is 2 169069 - 1
has 50895 decimal digits
takes 0.001 GHz-days to do one PRP test
Last-known PrimeNet details:
Exponent is not assigned to anyone
0 primality tests remaining
ResidueStatus
L-LC69E857131216E28double-checked
PRP-unknown--unknown-

 Trial FactoringP-1 FactoringCombined
LimitGHz-daysProbabilityB1B2GHz-daysProbabilityGHz-daysProbabilityProb over default TF
Actual267175.750273.1343%10000000020000000000.975512.1818%176.725776.4071%3.2727%
PrimeNet2400.000055.0000%1800400000.000011.4539%0.000060.1543%5.1543%
GPU722440.000059.0909%3000600000.00007.8258%0.000062.2924%3.2014%
Difference+23+175.7502+14.0434%+99997000+1999940000+0.9754+4.3561%+176.7257+14.1147%+14.1147%

Known prime factors (1 factor, 100.3 bits, 0.05933420% known):
Remaining cofactor is not a probable-prime

P-1GHz-days
exponentfactordigitsbits*kdate foundmin B1min B2min. TFmin. P-1normal P-1
169069157778795219924772699785840823131100.3164666106596121251462414335
3 × 5 × 41 × 599 × 12666385971527753471
2016-01-02599126663859715277534718.247e+113.308e+96.178e+9

P-1 results:
 GHz-DaysworthFactor
probability
dateuseridcompidb1b2estagefactordigitsbits*spentsaved
2001-05-06T00:00:00ANONYMOUSv4_computers10000010000000---0.003--2.555%
2002-06-02T00:00:00ANONYMOUSv4_computers327683276800---0.001--1.446%
2002-07-27T00:00:00ANONYMOUSv4_computers655366553600---0.002--2.096%
2003-02-09T00:00:00ANONYMOUSv4_computers13107213107200---0.004--2.873%
2003-10-08T00:00:00ANONYMOUSv4_computers26214426214400---0.008--3.768%
2009-01-20T02:12:00axnManual testing5000000200000000---0.075--7.588%
2013-08-05T12:02:00alpertronManual testing1000000002000000000---0.975--12.182%


Trial Factoring results:
 BitsFactorGHz-Daysworth
dateuseridcompidfromtofactorbits*digitsspentsaved
1999-11-17T00:00:00ANONYMOUSv4_computers252253--0.004--
2000-04-19T00:00:00ANONYMOUSv4_computers21254--0.014--
2022-03-07T04:07:18LordJuliusManual testing254255--0.014--
2001-01-21T00:00:00ANONYMOUSv4_computers21256--0.057--
2002-06-09T00:00:00ANONYMOUSv4_computers21257--0.114--
2016-02-23T16:27:57Mark RoseManual testing257258--0.114--
2008-12-31T05:14:00Sturle Sundehindemith.ifi258259--0.227--
2009-01-27T03:25:00Sturle Sundehaydn.ifi259260--0.454--
2013-08-22T21:41:00lycornasteroid260261--0.908--
2015-08-13T13:31:00NRManual testing261262--1.817--


ECM factoring results:

Old Calculation Method

Total ECM effort:14.493 GHz-days
Estimated T-Level:29.938
DigitsB1CurvesCompleteFacMiss
2011000911 / 1009.1100.011%
2550000911 / 2803.2543.841%
30250000632 / 6400.98737.222%
35100000048 / 15800.03097.007%

New Calculation Method

Total ECM effort:14.493 GHz-days
Estimated T-Level:29.938
DigitsB1CompleteFacMiss
201100064.5240.000%
25500009.2210.010%
302500001.02335.957%
3510000000.09291.246%
4030000000.00799.310%


ECM Summary

B1B2factorcurvesGHz-days
5000050000002790.972
2500002500000058410.18
1000000100000000453.136
100000010000000030.209


Lucas-Lehmer results:
No L-L results for M169069


PRP results:
dateuseridcompidcofactorsres64PRP
2017-09-22T00:03:08Oliver KruseOllaptop
1577787952199247726997858408231
B208A5B6003D73__no
2017-09-22T10:04:04Oliver KruseManual testing
1577787952199247726997858408231
B208A5B6003D73__no
2017-10-12T00:56:36kkmrkkblmbrbkc4.xlargeB208A5B6003D73__no
2020-04-17T17:51:45Oliver KruseAddPrpType5
1577787952199247726997858408231
1D3F98826898A4__no


P-1 factor-bounds graph:
B1 = 100000000, B2 = 2000000000 (P-1 stage 2)
B1 = 100000000 (P-1 stage 1)
B1 = 5000000, B2 = 200000000 (P-1 stage 2)
B1 = 5000000 (P-1 stage 1)
B1 = 262144, B2 = 26214400 (P-1 stage 2)
B1 = 131072, B2 = 13107200 (P-1 stage 2)
B1 = 100000, B2 = 10000000 (P-1 stage 2)
B1 = 65536, B2 = 6553600 (P-1 stage 2)
B1 = 262144 (P-1 stage 1)
B1 = 32768, B2 = 3276800 (P-1 stage 2)
B1 = 131072 (P-1 stage 1)
B1 = 100000 (P-1 stage 1)
B1 = 65536 (P-1 stage 1)
B1 = 32768 (P-1 stage 1)
101
102
103
104
105
106
107
108
101
102
103
104
105
106
107
108
109
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
TF factor-bounds graph:
267
262
261
260
259
258
257
256
255
254
253
250
260
270
280
290
2100
2110
Last modified: 2022-03-07T04:07:18+00:00