is 2 1304983 - 1
has 392840 decimal digits
takes 0.041 GHz-days to do one PRP test
Last-known PrimeNet details:
Exponent is not assigned to anyone
0 primality tests remaining
ResidueStatus
L-L-unknown--unknown-
PRP-unknown--unknown-
Cofactor is a probable prime

 Trial FactoringP-1 FactoringCombined
LimitGHz-daysProbabilityB1B2GHz-daysProbabilityGHz-daysProbability
Actual26722.769668.6567%500000150000000.05934.8656%22.828970.1818%
Target2600.117765.0000%55001800000.00070.9358%0.118465.3275%
Difference+7+22.6519+3.6567%+494500+14820000+0.0586+3.9298%+22.7105+4.8542%

Known prime factors (2 factor, 1,304,983.0 bits, 100.00000000% known):
Remaining cofactor is a probable-prime

P-1GHz-days
exponentfactordigitsbits*kdate foundmin B1min B2min. TFmin. P-1normal P-1
130498352199321825.63820
22 × 5
-453.440e-121.863e-73.741e-7
1304983
click to show decimal representation
392,8321,304,957.362

P-1 results:
 GHz-DaysworthFactor
probability
dateuseridcompidb1b2estagefactordigitsbits*spentsaved
2016-03-17alpertronManual testing5000001500000012-
skipped known factor: 52199321
--0.059--4.866%


Trial Factoring results:
No TF results for M1304983


ECM factoring results:
No ECM results for M1304983


Lucas-Lehmer results:
No L-L results for M1304983


PRP results:
dateuseridcompidcofactorsres64PRP
2017-09-30Oliver KruseGTX-0
52199321
PRP
2017-10-22kkmrkkblmbrbkold
52199321
PRP


P-1 factor-bounds graph:
B1 = 500000, B2 = 15000000 (P-1 stage 2)
B1 = 500000 (P-1 stage 1)
100
101
102
103
104
105
106
100
101
102
103
104
105
106
107
108
TF factor-bounds graph:
this exponent TF target: 60
TF double-checked to: 67.9
250
260
270
JSON version of this page
Last modified: 2023-10-02T12:12:48+00:00