is 212763-1
has 3,843 decimal digits
takes 0.000 GHz-days to do one L-L test
Last-known PrimeNet details:
-unknown- L-L tests remaining
ResidueStatus
L-L-unknown--unknown-
PRP-unknown--unknown-

 Trial FactoringP-1 FactoringCombined
LimitGHz-daysProbabilityB1B2GHz-daysProbabilityGHz-daysProbabilityProb over default TF
Actual263125.050377.7778%10,000,000,000205,711,343,735,7303,207.800934.7073%3,332.8512112.4851%47.4851%
PrimeNet2400.000065.0000%50010,0000.00003.2837%0.000068.2837%3.2837%
GPU722440.000268.1818%50010,0000.00001.3617%0.000269.5435%1.3617%
Difference+19+125.0501+9.5960%+9,999,999,500+205,711,343,725,730+3,207.8009+33.3456%+3,332.8510+42.9416%+42.9416%

Known prime factors (3 factors, 308.6 bits, 2.41800090% known):
Remaining cofactor is not a probable-prime

GHz-days
exponentfactordigitsbits*kmin B1min B2date foundmin. TFmin. P-1normal P-1
12763279982129747385402117841624472994.4991096850778607636927516421
13 × 157 × 23497 × 51481 × 444268121933
51,4814.44268e+112014-04-234.355e+116.922012.928
12763552993796846989531365263280812995.4812166394252319162937261080
23 × 5 × 11 × 251 × 3691 × 5314556783136077
3,6915.31456e+152008-10-251.138e+1282,804154,654
1276351386868334273952727482435639508658336118.62920131187155948426203667803666657
3 × 113 × 3929 × 825403 × 64385467 × 284402733547
64,385,4672.84403e+112017-02-031.358e+134.44868.2762

4 Composite Factors:
exponentprime factorscomposite factordigitsbits*
1276315482838097831310745751798073820996085918737755989
21774207
58189.981
1276314387404837278500207473809718750412840555343795178
060206702148601
65213.128
1276328416619428246489551470248172112503243796112657292
860287059237223
65214.110
1276379561456277413814196065685072711371391916458112793
4959792558736919171022548502967947741164681
93308.609
P-1 results:
 GHz-DaysworthFactor
probability
dateuseridcompidb1b2estagefactordigitsbits*spentsaved
2001-04-29T00:00:00ANONYMOUSv4_computers100,00010,000,000---0.000--2.779%
2001-07-17T00:00:00Alex Kruppav4_computers1,000,000100,000,000---0.002--6.236%
2001-09-30T00:00:00ANONYMOUSv4_computers43,000,0004,290,000,000---0.078--13.785%
2002-04-28T00:00:00ANONYMOUSv4_computers16,3841,638,400---2.99573e-5--1.025%
2002-06-09T00:00:00ANONYMOUSv4_computers32,7683,276,800---5.99146e-5--1.583%
2002-07-14T00:00:00ANONYMOUSv4_computers65,5366,553,600---0.000--2.284%
2017-02-03T23:42:19kkmrkkblmbrbkManual testing10,000,000,000205,711,343,735,73036118.6293,2085.03429e-66,41634.707%


Trial Factoring results:
 BitsFactorGHz-Daysworth
dateuseridcompidfromtofactorbits*digitsspentsaved
1999-09-14T00:00:00ANONYMOUSv4_computers252253--0.047--
2000-01-19T00:00:00ANONYMOUSv4_computers253254--0.094--
2000-07-17T00:00:00ANONYMOUSv4_computers?255--0.376--
2000-09-08T00:00:00ANONYMOUSv4_computers?256--0.752--


ECM factoring results:
ECM Summary

B1B2factorcurvesGHz-days
10.00000e+0
50,0005,000,0001480.030
250,00025,000,0005210.536
500,00050,000,000250.051
1,000,000100,000,0001,4215.848
3,000,000300,000,0003484.296


Lucas-Lehmer results:
Exponent "12763" not found


PRP results:
dateuseridcompidcofactorsres64PRP
2017-09-21T19:09:28Oliver KruseOliver-PC
27998212974738540211784162447
55299379684698953136526328081
513868683342739527274824356395086583
6D235C885C4CB955no
2017-09-21T19:22:03Oliver KruseManual testing
27998212974738540211784162447
55299379684698953136526328081
513868683342739527274824356395086583
6D235C885C4CB955no
2017-10-02T10:04:55kkmrkkblmbrbkManual testing
27998212974738540211784162447
55299379684698953136526328081
513868683342739527274824356395086583
6D235C885C4CB9__no
2017-12-07T02:54:39ATHManual testing
27998212974738540211784162447
55299379684698953136526328081
513868683342739527274824356395086583
6D235C885C4CB9__no
2020-04-17T13:48:03Oliver KruseManual testing
27998212974738540211784162447
55299379684698953136526328081
513868683342739527274824356395086583
5A782044B839AC__no


P-1 factor-bounds graph:
B1 = 10,000,000,000, B2 = 205,711,343,735,730 (stage 2)
B1 = 10,000,000,000 (stage 1)
B1 = 43,000,000, B2 = 4,290,000,000 (stage 2)
B1 = 43,000,000 (stage 1)
B1 = 1,000,000, B2 = 100,000,000 (stage 2)
B1 = 1,000,000 (stage 1)
B1 = 100,000, B2 = 10,000,000 (stage 2)
B1 = 65,536, B2 = 6,553,600 (stage 2)
B1 = 32,768, B2 = 3,276,800 (stage 2)
B1 = 16,384, B2 = 1,638,400 (stage 2)
B1 = 100,000 (stage 1)
B1 = 65,536 (stage 1)
B1 = 32,768 (stage 1)
B1 = 16,384 (stage 1)
102
103
104
105
106
107
108
109
1010
102
103
104
105
106
107
108
109
1010
1011
1012
1013
1014
1015
1016
TF factor-bounds graph:
263
256
255
254
253
250
260
270
280
290
2100
2110
2120
Last modified: 2020-04-17T13:48:03+00:00